- (ii) What are the objectives of OSCM?
- (iii) What are different types of layouts?
- (iv) Differentiate between JIT and lean production?
- (v) What do you mean by global optimization in logistics?
- (vi) What are economic benefits of warehousing?
- (vii) How e-procurement is different from purchasing process?
- (viii)Discuss social issues in supply chain management.

SECTION

UNIO-I

- 2. Describe the decision making in operations management and discuss four stages of operations and supply chain alignment with operation strategy.
- **3.** Describe the mechanics of three qualitative forecasting techniques and compare their strengths and weaknesses.

UNIT - II

- **4.** What are different factors in deciding location ? Explain the types and location planning methods.
- **5.** Write a detailed note on Material Handling principles and devices.

UNIT - III

6. Discuss in detail Logistical operation in supply chain management and explain logistics strategy and decision models.

12027- -(P-3)(Q-9)(19) (2)

7. Write a detailed note on future trends in supply chain management.

UNIT - IV

- **8.** Discuss in detail the process, trends and strategies of procurement.
- **9.** Write detailed note on social issues & Relationship development in supply chain management.

12027- -(P-3)(Q-9)(19) (3)

B. Tech. (Civil) 4th Semester/F-Scheme
Examination, May-2019
FLUID MECHANICS-II
Paper-CE-204-F

Time allowed: 3 hours]

[Maximum marks: 100

Note: Question No. 1 is compulsory. Attempt any five questions by selecting at least any one question from each section.

1. Explain the following:

 $10 \times 2 = 20$

- (a) Laminar & Turbulent flow
- (b) Net positive suction head
- (c) Aging of pipes
- (d) Cavitation
- (e) Water Hammer
- (f) Airlift Pump
- (g) Total Energy Line
- (h) Draft Tube
- (i) Priming of Pump
- (j) Surges in open Channels

Section-A

2. A smooth pipe of diameter 400mm & length 800m carries water at the rate of 0.04m³/sec. Determine the head lost due to friction, wall shear stress, center line velocity and thickness of laminar sub-layer. Take kinematic viscosity of water 0.18 stokes.

24196-P-3-Q-9(19)

[P.T.O.

downloaded from